
Training Guide

Sucosoft S40
Programming Software
02/02 AWB27-1307-GB
1st edition 12/97
2nd edition 07/98
3rd edition 06/99
4th edition 02/02
See list of revisions on inside rear cover

© Moeller GmbH, Bonn

Author: Arno Dielmann, Jürgen Herrmann,
Peter Stammerjohann

Editor: Annette Scholz, Thomas Kracht
Translator: David Long, Bonn

All brand and product names are trademarks or
registered trademarks of the owner concerned.

All rights reserved, including those of the
translation.

No part of this manual may be reproduced in
any form (printed, photocopy, microfilm or any
otherprocess) or processed, duplicated or
distributed by means of electronic systems without
written permission of Moeller GmbH, Bonn.

Subject to alterations without notice.

02
/0

2
A

W
B

27
-1

30
7-

G
B

Contents
Introduction 3
Devices and software 3
Documentation 4
Hardware requirements 6

1 Installing and Wiring the PS4 7
Address coding 7
Bus terminating resistors 7

2 Installing and Wiring the PS416 9
Address coding 9
Inserting the cards 9

3 Programming Task 1 11
Automation task 11
Basic information on programming to
IEC/EN 61131-3 12

4 NAVIGATOR 15
Overview 15

5 Creating a New Project 19

6 Creating a Program 23
Program entry in the IL Editor 32
Saving the program 36

7 Topology Configuration 39
Creating the topology configuration for the
PS4 40
Creating the topology configuration for the
PS416 42

8 Program Code Generation 45
1

2

 A
W

B
27

-1
30

7-
G

B

9 Test and Commissioning 49
Connecting the programming device to the
controller 50
Starting the program 54
Testing the program 64

10 Program Entry in LD/FBD 71
Displaying the example program in LD/FBD 72
Entering a program in LD 75
Entering a program in FBD 80
Online display of the example program in LD
or FBD 85
Entering a program in ST 87

11 Programming Task 2 91
Draft for function block LIGHT 94
Program POU EXP_PS4 102
Entering programming task 2 105
Testing and modifying the program online 117
Multiple instances of the Light FB 122
Displaying/forcing inputs/outputs on the
PS4 128
LD/FBD representation of programming
task 2 131

Index 135
02
/0

2

02
/0

2
A

W
B

27
-1

30
7-

G
B

Introduction
Devices and software
 The PS4 series compact controllers are a powerful
range of multi-purpose devices for small to medium
size automation tasks. The advantages are space-
saving design, a comprehensive range of basic
features as well as remote and with some types local
expandability. These features enable PS4 series
controllers to be used for almost all areas of
automation engineering: ranging from simple custom
applications via machine controllers installed directly
on the machine, for intelligent pre-processing,
through to networked systems e.g. for building
automation applications or for control of remote
stations, for example, in a sewage treatment plant.

The PS416 series controllers are a modular multi-
purpose system for medium to large size automation
tasks. The advantages are space-saving design,
short processing times and the large memory. The
modular concept with various CPUs, sizes and a
wide range of plug-in cards provide more flexibility
for custom automation applications. Due to the high
processing speed, the PS416 system is often used
where a lot of data needs to be processed quickly.

All programmable controllers are programmed with
Sucosoft S40. The Sucosoft S40 is a programming
software that meets the requirements of the
international IEC/EN 61131-3 standard and provides
a comprehensive instruction set in the four
programming languages Instruction List (IL), Ladder
Diagram (LD), Function Block Diagram (FBD) and
Structured Text (ST). You can changeover between
the AWL, KOP and FBS programming languages,
allowing you to use and combine the most suitable
language to suit your requirement and personal
preference. ST can be combined with IL-sequences
3

Introduction

4

with completed instructions, but not with LD or FBD
graphic elements. The programmable controllers
process all standard elementary data types and
derived data types. Besides the wide range of
IEC standard functions and function blocks, Moeller
functions and function blocks are also provided.
These can be added to your own user-defined
function blocks.
Documentation
 This manual is designed to provide a fast
introduction to the Sucosoft S40 programming
package. You will learn to work with the Sucosoft
S40 by means of a simple control task: You will be
guided through all steps required from creating an
individual project to testing the program which has
been created. After code generation, the complete
example program will be transferred to the controller
and tested. You will thus get to know the different
possibilities provided by the Test and
Commissioning tool. A further programming
example illustrates how to use the function blocks
provided with the Sucosoft S40 programming
software and how to program your own, user-
defined function blocks.

You will need approximately two hours for the first
programming example and approximately three
hours for the second example.

You can find a complete description of all the
 A
W

B
27

-1
30

7-
G

B

� programming possibilities for PS4 and PS416
controllers in the reference manuals
AWB2700-1305-GB “Programming Software
S40, User Interface” and AWB2700-1306-GB
“Programming Software S40, Language
Elements for PS4-200, PS4-300 and PS416”.
02
/0

2

Documentation

02
/0

2
A

W
B

27
-1

30
7-

G
B

Writing conventions

Select “Project � New” means choose the New
command in the Project menu.

Italic lower-case letters indicate texts which you
must enter exactly as shown.
Example: c:\projects\example

Instructions for actions you need to perform are
marked with an arrow �. All other sections merely
provide information and no action is required on your
part.

Information and tips provide you with additional
� notes concerning the topic and include
references to other sections of interest.
5

Introduction
Hardware
requirements
6

 A
W

B
27

-1
30

7-
G

B

PS4

For the first example you will require a
PS4-141-MM1, PS4-151-MM1, PS4-201-MM1,
PS4-271-MM1 or PS4-341-MM1 controller. For the
second example you will also need an EM4-101-DD1
expansion module and a KPG1-PS3 connecting
cable. A ZB4-303-KB1 programming cable (the
cable connecting PC and PS4) is required for both
examples.

PS416

For the example programs you will require a PS416
basic unit fitted with a power supply card, a
CPU-300 or CPU-400, a digital input card and a
PS416-OUT-400 digital output card. You will also
need a PS416-ZBK-210 programming cable or a
UM 1.5 interface converter. Other cards which may
already be inserted in the rack are not needed for the
programming example and will not be described
here.
02
/0

2

Address coding

02
/0

2
A

W
B

27
-1

30
7-

G
B

1 Installing and Wiring the PS4
Address coding
 Set the station address of the EM4-101-DD1 with the
address coding switch S2 before connecting the
EM4-101-DD1 to the PS4-141-MM1. The program
examples assume station address 1, which is
selected as follows (see also AWB27-1257-GB):

S2 1 2 3 4 5 6 7 8

1 0 1 1 1 1 0 1

1 = ON, 0 = OFF
Bus terminating
resistors
The bus terminating resistors must be enabled for
the physically first and last stations on the bus.
Switch S1 of the EM4-101-DD1 must thus be set as
follows:

S1: 1 = ON
2 = ON
S1 S2

OFF OFF

 1 2 1 2 3 4 5 6 7 8
Figure 1: Switch on bus terminating resistors
7

Installing and Wiring the
PS4

8

The following figure shows the wiring of the
PS4-201-MM1, PS4-141-MM1 or PS4-341 and the
EM4-101-DD1.
+24 V 0 V

2

24
 V 0
V .0 .1 .7 0
V.2 .3 .4 .5 .6 .0 .1 .7 0
V.2 .3 .4 .5 .6

PS 4-141-MM1

.0 .1 .2 .3 .4 .5 .0 .1 .7

0
V

.2 .3 .4 .5 .6 24
 V

0
V

U 0 U 1 U 10
Digital Input

Digital Output

Suconet K

KPG 1-PS3

24
 V 0
V .0 .1 .7 0
V.2 .3 .4 .5 .6

EM 4-101-DD1

.0 .1 .7 0
V

.2 .3 .4 .5 .6 24
 V

Suconet K1

1

2,5 mm2

2,5 mm2
 A
W

B
27

-1
30

7-
G

B

Figure 2: PS4 – EM4 wiring example
02
/0

2

Address coding

02
/0

2
A

W
B

27
-1

30
7-

G
B

2 Installing and Wiring the PS416
Address coding
 Before inserting the digital input card and the
PS416-OUT-400 digital output card in the rack, you
must set the card addresses with the DIP switches.
For the examples in this manual the digital cards
assume a byte address of “0” for digital I/O for both
inputs and outputs, which is selected as follows (see
also AWA 27-1304):

S1 S2 S3 S4 S5 S6 S7 S8

1 1 1 1 1 1 x x

1 = ON, 0 = OFF, x = not used
Inserting the cards
 Insert the power supply card in slots 0 and 1 on the
extreme left of the rack. The PS416-CPU should be
inserted adjacently, in slots 2 and 3. The digital I/O
cards PS416-INP-40x and PS416-OUT-400 should
be inserted in slots 4 and 5.

The following figure shows the wiring of the PS416.
You can use any PS416-BGT series rack for the
example.
9

Installing and Wiring the
PS416
PC

CPU I
N
P
4
0
x

O
U
T
4
0
0

PO
W

-4
00

0 1 2 3 4 5 6 7 8 9 10

230 V

ZAA
Q.0

Q.15
+24 V DC

0 V

PS 416-OUT-400

I.0
I.1
I.2
I.3

GND
GND

PS 416-INP-40x

0 V

24 V DC

0 V

+24 V DC

PS
 4

16
-Z

BK
-2

10
 o

r U
M

1.
5

10

 A
W

B
27

-1
30

7-
G

B

Figure 3: PS416 wiring example

Connect up the 230 V AC or 24 V DC power supply
depending on the power supply card used. The LEDs
to indicate the status of the outputs are provided
with 24 V DC through the plug-in screw terminals on
the PS416-OUT-400. Inputs 1 and 2 of the
PS416-INP-40x are connected to buttons, and
inputs 0 and 3 are connected to switches which are
all supplied with 24 V DC.

Set the switch of the CPU programming interface to
RS 232 if you want to use the PS416-ZBK-210
programming cable. If you want to use the UM1.5
interface converter, set the switch to the RS 485
position.
02
/0

2

02
/0

2
A

W
B

27
-1

30
7-

G
B

3 Programming Task 1
After studying the automation task, you will be
shown how to write it in an IL program. You will then
be guided through the Sucosoft S40 steps required
to:

Create a project,

Create the program file,

Specify the configuration,

Generate the program code,

and carry out test and commissioning.
Automation task
Figure 4: Automation task

When the system is in the initial position, pressing
the START button should move the robot arm to
position A. The HALT button is used to interrupt the
action.

START HALT

Position AInitial position
11

Programming Task 1
Basic information on
programming to
IEC/EN 61131-3
12

 A
W

B
27

-1
30

7-
G

B

As specified by IEC/EN 61131-3, the variables used
in the program must be declared between two
keywords. Different keywords are used depending
on the scope. The local variables which are used in
the first programming task should be declared
between the keywords VAR and END_VAR.

The instruction section of a program organisation
unit (POU) is always placed after the declaration
section. The entries required in the declaration
section depend on the scope. For local variables,
you must specify the variable name,
the data type and, if appropriate, the physical
address, an initial value, an attribute and a comment.
Variables used as intermediate markers are declared
symbolically, i.e. without entering an address.

Binary input and output operands, i.e. variables
assigned to physical addresses, are called to
EC/EN 61131-3. Conventions exist for directly
represented variables which must be observed when
specifying the address:

Each directly represented variable must be prefixed
with the keyword AT which is followed by a percent
sign, an identifier (I = Input, Q = Output) and a 5-digit
address. The first three digits of the address are the
device address which is specified in the topology
configuration. With a control system which only
consists of a controller without further stations, the
first three digits are always 0. The last two digits
identify the byte and bit address.

Example: AT %I0.0.0.0.3 identifies the input operand
bit 3 in byte 0.
02
/0

2

Basic information on
programming to IEC/EN
61131-3

02
/0

2
A

W
B

27
-1

30
7-

G
B

The example task only uses binary input/output
variables. The following addresses are used:

Initial position: Input 0.0
Start button: Input 0.1
Stop button: Input 0.2
Position A: Input 0.3
Motor: Output 0.0

The variable names are freely selectable. The
variable declaration appears as follows:
VAR
initial_pos AT %I0.0.0.0.0:BOOL; (*Initial position of machine*)
start_button AT %I0.0.0.0.1:BOOL; (*Start button*)
stop_button AT %I0.0.0.0.2:BOOL;
position_A AT %I0.0.0.0.3:BOOL; (*Position A reached*)
motor AT %Q0.0.0.0.0:BOOL;

END_VAR
The binary input operand “initial_pos” is read and
ANDed with the “start_button.

Read command: LD
AND sequence: AND

If the current result (CR) = 1, the “Motor” output
operand is set to “1”. (The LED on the “motor” output
is lit).
Set command if CR = 1: S

The input operands “stop_button” and “position_A”
are read and ORed. If the current result = 1, the
output operand “motor” is reset

(The LED on the output “motor” goes out.)
Reset command if CR = 1: R
13

Programming Task 1

14
The instruction list then appears as follows:

LD initial_pos
AND start_button
S motor (*switches motor on*)
LD stop_button
OR position_A
R motor (*switches motor off*)

To identify the program, it must have the PROGRAM
keyword and the program name in front of the
declaration block. In addition, the end of the
instruction section must be followed by the
END_PROGRAM keyword to indicate the end of the
program.

The program example has the following form:
 A
W

B
27

-1
30

7-
G

B

PROGRAM position
VAR

initial_pos AT %I0.0.0.0.0:BOOL; (*Initial position of machine*)
start_button AT %I0.0.0.0.1:BOOL; (*Start button*)
stop_button AT %I0.0.0.0.2:BOOL;
position_A AT %I0.0.0.0.3:BOOL; (*Position A reached*)
motor AT %Q0.0.0.0.0:BOOL;

END_VAR
LD initial_pos
AND start_button
S motor (*Switches motor on*)
LD stop_key
OR position_A
R motor (*Switches motor off*)

END_PROGRAM

�
Do not enter the first and last lines of the program
containing the PROGRAM and END_PROGRAM
keywords. This is done automatically be the
POU-EDITOR.
02
/0

2

02
/0

2
A

W
B

27
-1

30
7-

G
B

4 NAVIGATOR
Overview
 Start Windows and double-click on the Navigator
icon. The Sucosoft S40 starts and the NAVIGATOR
window opens:
Figure 5: NAVIGATOR window

The Navigator window contains the icons used to
activate the individual tools.

The Navigator helps you perform all of the steps you
need to take, from creation of a user program
through to the program’s execution in the PLC:

It includes the project management tool which
you use to create and structure projects.

It allows you to access the POU Editor so that you
can edit your POUs (programs, function blocks
and functions). It allows you to access the
topology configurator which you use to define the
hardware configuration.
15

NAVIGATOR

16

 A
W

B
27

-1
30

7-
G

B

It includes the Code Generator which is used to
compile your program into an executable
program for the specified controller.

You can directly access the Test &
Commissioning tool which allows you to transfer
your program to the PLC and carry out tests.

It provides you with the Form Editor which is used
to view and edit standard forms.

In the main window of the Navigator, the title bar
appears at the top and the status bar at the bottom.
Below the title bar is the menu bar, followed by the
icon bar and then the toolbar next to it. The area
between is divided into three windows:

The top left window (browser window) contains
the “tree structure” with the respective folders.
The three tabs “Sources”, “Devices” and
“Libraries” form the bottom edge of this window.

In the right hand window is the “File” window.

Beneath this window is the “Output” window for
status and error messages, e.g. during
generation of the program code.

You can change the size of the window by
dragging the parting line with the mouse.
02
/0

2

Overview

02
/0

2
A

W
B

27
-1

30
7-

G
B

The diagram below shows an overview of the
steps you will follow in program task 1, from
program entry to the test run of the complete
program.
The overview will be helpful for the following
sections.

Create project

Create POU

Variable declaration

Program entry

Topology configuration of the
system components

Program code generation

Test and commissioning

Transfer program to PLC

Start program

Test program
17

18

 A
W

B
27

-1
30

7-
G

B

02

/0
2

02
/0

2
A

W
B

27
-1

30
7-

G
B

5 Creating a New Project
In our example, the following path will be used:

C:\PROJECTS\EXAMPLE

To create a new project, you select ‹ Project �
New...› in the menu or click on the corresponding
toolbar button.

Creating a New Project

The “Create New Project” dialog box opens:

Create project

Create POU

Variable declaration

Program entry
19

Creating a New Project

20

 A
W

B
27

-1
30

7-
G

B

Figure 6: Create new project

� You first select the drive, in this case “C”.

In this example, you will store your project in the
folder “Projects”. You create this folder as follows:

� Click on the “New folder” button then enter the
new folder name in the “New folder” dialog box.
Confirm with OK.

� Now enter “Example” for the name of the new
project in the “New project folder” input field.
Confirm with OK.

Sucosoft S40 then creates a project structure with
the folders “Devices” and “Source”.

The title bar displays “Example” as the name of the
new project and the status bar displays
“C:\Projects”, indicating the drive and path of the
project.
02
/0

2

Overview

02
/0

2
A

W
B

27
-1

30
7-

G
B

�
Before you start creating your POU, make sure
the right type of PLC is selected. The PLC type is
displayed in a selection window in the toolbar of
the Navigator. The data types and manufacturer
function blocks or functions the POU Editor
provides you with depend on the PLC type you
select.
Figure 7: Selection window for the PLC type

Select PLC type
The following controllers are grouped under the three
types of PLC you can select:

PS4-200:

PS4-141-MM1,

PS4-151-MM1,

PS4-201-MM1,

PS4-271-MM1

PS4-300:

PS4-341-MM1

PS416:

PS416-CPU-200,

PS416-CPU-300,

PS416-CPU-400

� Select the required PLC type in the selection
window within the toolbar
21

22

 A
W

B
27

-1
30

7-
G

B

02

/0
2

02
/0

2
A

W
B

27
-1

30
7-

G
B

6 Creating a Program
User programs, which you create with the POU
Editor, can consist of one or more POUs (files). The
term “POU” according to the international standard
IEC/EN 61131-3 represents Program Organisation
Unit and designates the three POU types, which are
“Program”, “Function module” and “Function”.
“Function” or “function module” is selected for the
program section which is used most often.

All of the POUs (files) you store are automatically
registered under the current project by the Navigator
and placed in the “Source” folder. Also stored in this
folder are the topology configuration files you create
with the topology configurator. All files of type
Topology and POU (program, functions and function
blocks) are then displayed in the “File view” window
of the Navigator.

You can enter the basic settings of the POU Editor
when creating a new POU, including the
programming language you wish to use in the POU
Editor when it opens. You enter these settings under
Options � Settings... � Instruction Section.

In the description below, the buttons of the standard
toolbar are used. Activate this toolbar – if necessary
– via ‹ View � Toolbar› .

Context-sensitive menus
Context-sensitive menus help to make the
programming task easier for you. These are short
menus containing the most important commands for
a specific Sucosoft S40 function.
23

Creating a Program

24

 A
W

B
27

-1
30

7-
G

B

You open context-sensitive menus by clicking with
the right mouse button on the object or window you
are dealing with. The content of the menu depends
on the environment, the context where the mouse
pointer is positioned and on the selected element.

Figure 8: Context-sensitive menu for declaration section in
syntax mode

For our example, you will need an executable
program. The POU type Program must therefore be
selected.

Use the Navigator menu to create the user program:

� Select ‹ Tools � POU editor› or the respective
button in the toolbar.

POU Editor in Offline mode

The POU Editor opens.

� Select the – required POU type “Program”
corresponding with – the ‹ File � POU new �
Program› or the “P” button in the standard
toolbar.

“Program”
02
/0

2

Overview

02
/0

2
A

W
B

27
-1

30
7-

G
B

When you create a new POU program, the POU
Editor asks if you want to create variables or declare
variables from a topology. The physical PLC
addresses which you have defined in the topology
configurator are accepted in the declaration section
of the POU program and assigned with the “Global”
scope. You only need to assign the variable names.

As this function reduces the editing effort required, it
is useful to read Section 7 now. Generate your
topology example and answer the question with
“yes”.

The two windows “Declaration and Instruction
section” open, arranged on the screen as specified in
the basic settings of the POU Editor.
Figure 9: POU Editor in Syntax mode
25

Creating a Program

26

 A
W

B
27

-1
30

7-
G

B

You enter the program in two stages:

In the declaration section, you declare the
variables you want to use in the instruction
section.

In the instruction section, you create your user
program.

To enter your variables in the declaration section,
Sucosoft S40 provides you with a table-oriented,
Syntax-controlled Variable Editor Syntax-controlled
Variable Editor (Syntax mode). Declaration of the
variables in predefined input fields is made easier for
you with user guidance. There is also a pure text-
based, free variable editor (Free mode) without user
guidance for experienced PLC programmers.
Beginners are advised to declare the variables in
Syntax-controlled mode since you will not have to
worry about entering keywords and the syntax.

For creating your user program, you can choose
between the programming languages Instruction List
(IL), Structured Text (ST) or one of the graphic
programming languages, ladder diagram (LD) or
function block diagram (FBD). We will create the
example program in IL.

You are free to decide whether to first declare the
variables or write the instruction list section. You can
also carry out both at the same time. For this
example, we will first declare the variables and then
enter the instruction section.
02
/0

2

Overview

02
/0

2
A

W
B

27
-1

30
7-

G
B

Declaring the variables

You enter the variables, separately for each scope,
under different tabs. With the selected “Program”
POU type, only the tabs of the permissible scope,
i.e. “Type”, “Local” and “Global” are available.

Figure 10: Scope for the “Program” POU type

You select the scope by clicking on one of the tabs
visible at the bottom of the window.

Commence the variable declaration with the “Local”
preset scope. You do not need to click on the tab in
this case. The window only displays cells which are
permissible for this scope. Now declare all of the
variables of this type.

Should you create a POU that contains other scopes,
you select the relevant tab for the other types and
declare these variables. The list always displays
variables of the same type.

Create project

Create POU

Variable declaration

Program entry

Topology configuration of the
system components
27

Creating a Program

28

 A
W

B
27

-1
30

7-
G

B

You enter the variables by completing the cells in the
editing line. You can switch between cells with

Cursor left/right,

TAB/Shift + TAB,

Cursor up/down,

Page up/Page down or

by mouse click.

Errors in variable declarations are determined by the
syntax test or when saving the program and
displayed in the error protocol window. In this case,
double click on the error message and you will be
transferred automatically to the error. Correct the
error.

As mentioned earlier, the program example only
uses “local” scope variables.

� To declare the first variable in the program
example make the following entries in the order
shown.

Name: initial_pos

Type: Select the variables of the data type under
‹ Insert � Variable declaration› or use the context-
sensitive menu via the right-hand mouse button.
Mark the “data type” group and select the required
type from the list which appears below.

Initial value: An entry is not necessary – so that the
“initial_pos” variable is assigned the value “0”.
02
/0

2

Overview

02
/0

2
A

W
B

27
-1

30
7-

G
B

Attribute: No entry.
You can choose RETAIN for a retentive variable or
CONSTANT for a constant. These entries are not
meaningful for input/output variables (I/Q).

Address: I0.0.0.0.0
Physical address of the “initial_pos” variable.

Comment: Can be entered if required. Enter
“System initial position” in this case.

� Finish the entry in this line by pressing the Enter
key.

The fully defined variable will appear as follows:

� Use the same method to declare the remaining
variables of the example program.

The variable list is then complete.

Name Type Address Comment

 initial_pos BOOL I0.0.0.0.0 System initial position

Name Type Address Comment

start_button BOOL I0.0.0.0.1 Start_button

stop_button BOOL I0.0.0.0.2

position_A BOOL I0.0.0.0.3 Position A reached

motor BOOL Q0.0.0.0.0
29

Creating a Program
30

 A
W

B
27

-1
30

7-
G

B

Figure 11: Declared variables in Syntax Mode

The completed variable declaration can be viewed
under “Free mode”:

� Select ‹ Options � Variable Editor � Free Mode›
or the button in the standard toolbar.

“Free Mode”

The Editor window appears on the screen with the
variable declaration which you created in the Syntax-
Controlled Variable Editor:
02
/0

2

Overview

02
/0

2
A

W
B

27
-1

30
7-

G
B

Figure 12: Declared variables in Free Mode

In the Free Variable Editor, the declared variables are
represented in the form of declaration blocks as
described in the IEC Standard, with the keywords
VAR, END_VAR and AT, with the separator “:” and
the appropriate characters for the comment
(*Comment*).

This formal structure is created automatically when
declaring the variables in the Syntax-Mode. The
correct order of declaration of the individual ranges
of validity is also controlled automatically. The
declaration procedure in the Syntax-Mode is thus
very easy, but it has the disadvantage that it shows a
variable list with only one scope at a time, for
example only input or only local variables.

The variables can also be declared in the Free
Variable Editor, but you must know the keywords,
separators and syntax rules in advance. The Free
Variable Editor provides you with a complete
31

Creating a Program

32
overview of all declared variables of each of the
ranges of validity, and the entries can be made faster
if you have the required programming knowledge. In
addition, corrections can be made more easily in the
Free Variable Editor.
Program entry in the IL
Editor
 A
W

B
27

-1
30

7-
G

B

After the variable declaration is complete, you can
commence the entry of the instruction section of the
program.

� You can change to the IL section by clicking with
the left mouse button in that section.

The IL programming language was preset earlier but
you can also select it in the toolbar or via the POU
Editor menu item Options � Programming
Language � IL.

“Use of the IL Editor”

The programming language IL is a text-based, line-
oriented language with the following structure:

Label (optional) – Operator – Operand – Comment (optional)

You must enter at least one tab or space between the
individual elements and start each instruction with a
new line. The comment is written between the

Create project

Create POU

Variable declaration

Program entry

Topology configuration of the
system components
02
/0

2

Program entry in the IL
Editor

02
/0

2
A

W
B

27
-1

30
7-

G
B

combinations of characters Open Bracket/Asterisk
[(*] and Asterisk/Close Bracket [*)]. Enter a tab before
each comment so that the comment is separated
from the command line. The row and column number
of the current cursor position are displayed in the
status bar at the bottom of the window.

The operators and comments are displayed in
different colours to simplify editing of the instruction
list.

Insert operators

The available operators are represented in the
toolbar as icons. They change to suit the programing
language which you set.
Figure 13: IL Toolbar

Figure 14: ST Toolbar
Figure 15: LD Toolbar
Figure 16: FBD Toolbar
A tool tip (appears when you move the mouse pointer
over the button) provides a short description of the
operator.

You can also use the keypad to enter the commands.
33

Creating a Program

34
Enter the variables

Variables which have already been declared can be
inserted in the instruction section via the right hand
mouse button and “Insert variable...” or with the
respective menu listing under “Insert”.

A dialog opens in which the variables, and if
applicable, the function modules with their
respective ranges of validity are displayed.
 A
W

B
27

-1
30

7-
G

B

Figure 17: Inserting variables

� Enter the example program as shown, making
sure you adhere to the stated rules.
02
/0

2

Program entry in the IL
Editor

02
/0

2
A

W
B

27
-1

30
7-

G
B

LD initial_pos
AND start_button
S motor (*Switches motor on*)
LD stop_button
OR position_A
R motor (*Switches motor off*)

When you have finished entering the program, the
Editor window appears as follows:
Figure 18: The finished example program
35

Creating a Program
Saving the program
36

 A
W

B
27

-1
30

7-
G

B

POUs within a project are always stored in the
“source” folder (default) or its sub-folders. Should
you need to store a POU such as a function block in
a sub-folder, you have to create this first in the
Navigator via the Edit menu or the context-sensitive
menu for the source file tree in the “Tree” window.

� Save the finished example program with ‹ File �
Save As...› or by clicking on the button below:

“Save current POU”

In the window that opens, the “SOURCE” folder
which is displayed is the folder for the current project
and the destination folder for the POU.

� Enter the name “position” for the POU and
confirm this by clicking on the OK button.

Figure 19: “Save as...” dialog for saving the POU
02
/0

2

Saving the program

02
/0

2
A

W
B

27
-1

30
7-

G
B

Syntax check
With the syntax check, the current POU is saved
automatically. If the POU has just been created, you
are requested to save the POU with a new name.

� Select ‹ File � Syntax check› or the respective
button

“Syntax check”

If you have entered the program correctly, a
message should appear in the status bar informing
you that the syntax check has been completed
without errors. Otherwise the POU Editor output
window will open and display an error list:
Figure 20: Error messages during program code
generation
37

Creating a Program

38

 A
W

B
27

-1
30

7-
G

B

Displayed from left to right are:

Error location (Declaration section or Instruction
section)

Line number

Column number and

a brief description of the error.

If you cannot identify the error through the brief
description, select the line with the error and press
F1 to get further information.

Trouble shooting: Double click the line with the error
or mark it and then press the Enter key and the
cursor will jump to the fault location.
02
/0

2

02
/0

2
A

W
B

27
-1

30
7-

G
B

7 Topology Configuration
Before generating the program code, you must
specify your hardware system with the Topology
Configurator tool. You need to enter the required
information on the system (topology) and to
configure each system component.

� Start the Topology Configurator in the menu
under “Tools” or use the respective icon on the
NAVIGATOR.

Topology configurator

The Topology configurator is started.

Topology configuration of the
system components

Program code generation

Test and commissioning
39

Topology Configuration

40
Figure 21: Topology configurator
Creating the topology
configuration for the
PS4
 A
W

B
27

-1
30

7-
G

B

How to create a topology configuration is explained
with the following example. For the example, you will
need a PS4-141-MM1, PS4-151-MM1, PS4-201-
MM1, PS4-271-MM1 or PS4-341.

To specify the topology configuration, you must
define all modules of the automation system and
enter information about each component. However,
only the PS4 compact controller is relevant to the
example topology in the following. Other modules
which may be connected to your controller are not
considered in the example.

All actions required for the configuration of a
topology can be accessed via the menu or the
toolbar of the Topology Configurator tool.
Explanations of the individual icons can be found
under the tool tips.

First define the CPU:

� Create a new topology configuration:
02
/0

2

Creating the topology
configuration for the PS4

02
/0

2
A

W
B

27
-1

30
7-

G
B

Figure 22: “New Configuration” dialog

� Enter the name DEVICE into the File Name box.
Select the PS4-141-MM1 (or the PS4 controller
type which you are using) in the PLC Type list box
and confirm with OK.

Figure 23: Topology with PS4-141-MM1
41

Topology Configuration

�
In the present example, you do not need to
specify slave or master parameters for the PLC.
You only need to do this if the controller is
connected to a networked controller system via
the Suconet K interface. You define the settings
for the PLC in the parameters window. Open the
window via the context-sensitive menu, or
‹ Edit � Setting Parameters› or via the Set
Parameters button.
42
� Save the configuration.
Creating the topology
configuration for the
PS416
 A
W

B
27

-1
30

7-
G

B

You will need a PS416-CPU-400 controller for this
example.

To specify the topology configuration, you must
define all modules of the automation system and
enter information about each component. However,
only the CPU and the PS416-OUT-400 digital output
card as well as the input card are considered in the
following example topology.

Proceed in the same manner with the creation of the
PS4 configuration as with the creation of the PS416
configuration:

� Create a new topology configuration:

� Select a PS416-CPU-200/300/400 to suit your
hardware.
02
/0

2

Creating the topology
configuration for the PS416

02
/0

2
A

W
B

27
-1

30
7-

G
B

Figure 24: Topology with PS416

� Click on the Local Expansion button and select
the input card PS416-INP-400 or PS416-INP-401
from the list and confirm with OK.

� Follow the same procedure to choose the output
card PS 416-OUT-400.

� Select the two cards one after the other in the
graphical view and after clicking on the Set
Parameters button, enter in the dialog box the
byte addresses previously configured on the card
by DIP switch.
43

Topology Configuration

44

 A
W

B
27

-1
30

7-
G

B

Figure 25: Extended configuration

� Save the configuration.
02
/0

2

02
/0

2
A

W
B

27
-1

30
7-

G
B

8 Program Code Generation
Program code generation is carried out in two steps:

Create a make file list, which specifies all the
elements (files) for consideration during program
code generation: The program POU (with the
respective function modules and functions), the
topology file and the program parameter
definition. One generated list can be created per
program POU. It is automatically given the name
of this program POU. Sucosoft S40 then updates
the make file automatically as soon as you modify
a project POU, the program parameters or the
topology.

Generation of the program code according to the
files specified in the make file.

All commands required to create an executable user
program can be activated with the edit buttons in the
toolbar.

Topology configuration of the
system components

Program code generation

Test and commissioning
45

Program Code Generation

46

 A
W

B
27

-1
30

7-
G

B

Creating the make file

� Use the NAVIGATOR toolbar to define the PLC
for which the program code is to be generated.

� Select ‹ Generate � New make file...› or click on
the respective button.

“Create make file”

The New Make File dialog box opens:

Figure 26: New Make File dialog box

In this dialog you select the Program POU and the
topology. Only topologies which suit the PLC which
you have selected in the NAVIGATOR will be
displayed.

� Click the OK button.

The make list is created.
02
/0

2

Creating the topology
configuration for the PS416

02
/0

2
A

W
B

27
-1

30
7-

G
B

Undertaking program parameterization

Program parameters such as compiler options for
the PLC type selected or conditions relevant to the
execution of the program, such as maximum cycle
time, password and marker range, have to be
specified by you. You use the corresponding button
to do this

“Setting the program parameters”

In our example, however, the preset standard
parameters are sufficient.

Generating the program code

� Select ‹ Generate � Generate program code› or
click on the respective button.

“Generate program code”

The executable program is generated according to
the currently selected make file. The Output window
shows the progress of the generation process. The
respective message wil appear if compilation
completes without errors.

If errors occur while the program code is being
generated, they are displayed in the Output window
with a corresponding message.

You can print out these errors via Project � Print
Output.
47

Program Code Generation

48

 A
W

B
27

-1
30

7-
G

B

Trouble shooting

Messages state from left to right:

Error location (declaration section or instruction
section)

Line number

Column number and

Name and path of the POU

� Select an error line and confirm with the Enter key
or double click on an error line.

The POU Editor opens. The cursor is located at the
position of the POU at which the error was found.
The POU line with the error is marked red in
accordance with the basic setting made earlier.

� Fix the error and re-start generation of the
program code.
02
/0

2

02
/0

2
A

W
B

27
-1

30
7-

G
B

9 Test and Commissioning
The Test and Commissioning (T & C) tool is used to
transfer the program to the controller and test it.
The following steps are necessary:

Specify and establish the connection between
the programming device and PLC

For the PS416 or PS4-300 PLC's, transfer the
operating system to the PLC.

Transfer program to the PLC

Start program

Test program.

� Start the T & C.

“T & C”

The main test and commissioning (T & C) window
opens with the “Connection list”:
Figure 27: “Connection list” window
49

Test and Commissioning
Connecting the
programming device to
the controller
50

 A
W

B
27

-1
30

7-
G

B

Specifying the connection

First of all you must define the connection between
the programming device (PC) and the controller. The
Connection List window automatically displays
some default values which you can add to or modify
as required.

� Click the Device Name box with the mouse and
enter the PLC name “example_1” for the PLC to
be connected.

If your programming cable is not connected to the
default serial interface COM1, you can set another
serial interface. Click in the “interface” field and
select another interface from the pop-up list which
appears.

The Line and Station fields in the Connection List
window are not relevant for this example and are left
empty.

� Save the data you entered with ‹ File � Save› .
The file is automatically assigned the name
CONNECT.CCF.
02
/0

2

Connecting the
programming device to the
controller

02
/0

2
A

W
B

27
-1

30
7-

G
B

Establishing the connection

This is how you connect your programming device
with the PLC.

Prerequisite: Only the “Connection list” is open in the
T & C window.

� Connect the PLC via ‹ Device � Connect› or the
respective icon.

“Connect device”

Successful connection establishment is indicated by
display of a modified device icon.

Figure 28: Representation of successful connection

Transferring the operating system and program

If the PLC contains no operating system or has an
old operating system version, you must first transfer
a new version of the operating system into the
controller. The current version of the operating
system is shipped with Sucosoft S40.

Transfer program to PLC

Start Program

Test program

Test and commissioning
51

Test and Commissioning

52
Transferring the operating system from Sucosoft
to the controller
�
The transfer of an operating system is
unnecessary with the PS4-200 type PLC. This
section only relates to the PS4-300 and PS416
type PLC's.
� Select ‹ Device � Transfer/File Manager› or the
respective icon.

“Transfer/File Manager”

The “Transfer/File Manager” dialog field opens. The
“Programmer (PRG)” tab is the preset default.
Names of the executable files of the “.PCD” type are
shown in a list.

� In oder to transfer the operating system to the
PLC, select the “operating system (*.OSF)”
format in the File Name list and mark the required
operating system.
07
-G

B

 A

W
B

27
-1

3
Figure 29: Selected operating system for transfer
02
/0

2

Connecting the
programming device to the
controller

02
/0

2
A

W
B

27
-1

30
7-

G
B

� Select the “Transfer � PLC” button.

“Transfer to PLC”
Caution!
When you replace an existing operating system
in the controller with a new version, all user
programs and data are deleted at the same time!
The transfer can take several minutes, depending on
the baud rate of the connection. The Transfer
progress indicator is displayed to show the progress
of the transfer.

Transfer of the program from the Sucosoft to the
PLC.
� This section applies for all controller types.
� Access the “Transfer/File Manager” as previously
described.

The “Programmer (PRG)” tab is the preset default.
Names of the executable files of the “.PCD” type are
shown in a list.

� Select the “Program (*.PCD)” file format in the list.
53

Test and Commissioning

54
Figure 30: Program file selection

� Select the program code file you wish to transfer
to the PLC (i.e. POSITION.PCD) and click
Transfer � PLC to start the transfer.

“Transfer to PLC”

The Transfer progress indicator is displayed to show
the progress of the transfer.
Starting the program

 A

W
B

27
-1

30
7-

G
B

� Click the “Controller” tab in the “Transfer/File
Manager” dialog and click on the “Cold Start”
button to start the program.

Transfer program to PLC

Start Program

Test program

Test and commissioning
02
/0

2

Starting the program

02
/0

2
A

W
B

27
-1

30
7-

G
B

Figure 31: Start program

After successful transfer, the green “READY” lamp
lights on the CPU card to show that it is ready. If the
program was unable to start, you will get a system
message indicating the possible reason.

You can get further information concerning the state
of the program and the CPU in the “Program Status”
dialog described in the following section.
55

Test and Commissioning

56

 A
W

B
27

-1
30

7-
G

B

Status and diagnostics

� Select ‹ Generate � CPU Status› or click on the
respective button.

“CPU Status”

The “Program Status” dialog apears. Here you can
check

if the user program is correctly executed
(CPU Status),

the possible causes of a fault user program
(CPU Diagnostics),

which properties are assigned to your user
program (program status).

Detailed information concerning the “Status and
diagnostics” dialog can be found in the “S40 User
Interface” manual (AWB2700-1305-GB). The
following is just a brief description.
02
/0

2

Starting the program

02
/0

2
A

W
B

27
-1

30
7-

G
B

CPU Status
� Click on the “CPU Status” tab.

The following dialogs will appear depending on the
PLC selected:
Figure 32: CPU Status for PS4-200 (PS4-300 analog)
57

Test and Commissioning

58
 A
W

B
27

-1
30

7-
G

B

Figure 33: CPU Status for PS416

The RUN operating status indicates that the user
program is being executed. If the NOT READY
operating status is displayed, an error has occured.
Possible causes for this error can be found in the
CPU diagnostics.
02
/0

2

Starting the program

02
/0

2
A

W
B

27
-1

30
7-

G
B

CPU diagnostics
� Click on the “System Diagnostics” tab in the

“Program Status” dialog.

Depending on the controller selected, the following
dialog will appear with a listing of the diagnostics
bits.
Figure 34: CPU diagnostics for PS4-200 (PS4-300 analog)
59

Test and Commissioning
60

 A
W

B
27

-1
30

7-
G

B

Figure 35: CPU diagnostics for PS416

With the PS416, you can access more information
with the “Diagnostics” tab:
02
/0

2

Starting the program

02
/0

2
A

W
B

27
-1

30
7-

G
B

Figure 36: Program diagnostics for PS416
61

Test and Commissioning

62
Program status

� Click on the “Program Status” tab.

The following dialogs will appear depending on the
PLC selected. Here you can for example, do the
following:

perform a cold or warm start – depending on the
position of the CPU operating selection switch –
or,

stop the PLC with a mouse click or

read off how long your program requires for
execution by examining the cycle time.
 A
W

B
27

-1
30

7-
G

B

Figure 37: Program status of PS4-200
02
/0

2

Starting the program

02
/0

2
A

W
B

27
-1

30
7-

G
B

Figure 38: Program status of PS416
63

Test and Commissioning
Testing the program
Prerequisite: Only the “Connection list” is open in the

Transfer to program to PLC

Start Program

Test program

Test and commissioning
64
T & C window.

� Select ‹ Device � Program› or click on the
respective button.

Program

The menu and toolbar are adapted accordingly.
 A
W

B
27

-1
30

7-
G

B

Figure 39: T & C with open Program POU

The Program window consists of two parts. The left
panel “Instance Tree” contains RESOURCE which
indicates the first level of the program structure and
represents the CPU. The right panel of the dialog box
contains the name of the example program POU
(POSITION).
02
/0

2

Testing the program

02
/0

2
A

W
B

27
-1

30
7-

G
B

� Double-click the RESOURCE line to display the
further program structure, in this case only the
POSITION program POU.

If further POUs (function blocks and functions) are
called by the program POU, this is indicated by a
plus sign next to the program name. This allows you
to list and select all components of a program
structure and carry out modifications.
�
If you want to edit the program online, the current
project must first be loaded in the Project
Manager. In addition, the contents of the
individual POUs and the program code must
match the program version in the controller. In
our example, we assume that you have followed
our instructions above, in which case both
requirements are fulfilled.
� In order to view or change the POU online: Mark
the POU names “POSITION” in the left panel and
select the menu point ‹ Program � View/Change
POU› or the respective button.

View/Change POU

The POU Editor opens in Online mode, in which your
POU “POSITION” is opened and presented in the
foreground.
65

Test and Commissioning
66

 A
W

B
27

-1
30

7-
G

B

Figure 40: POU Editor in Online mode

The “Online” menu and the buttons for the following
actions are availabe:

status indication of variables,

activation of changes made in the instruction
section

transfer of variables to the variables window.
02
/0

2

Testing the program

02
/0

2
A

W
B

27
-1

30
7-

G
B

Checking POU - diaplay variable state

� Select the POU Editor window ‹ Online � Status
display› or click on the “Status display” button to
switch the status indication on and off.

“Status display”

The variable states in the declaration and instruction
section appear. In our IL-program, the variable states
in the status column are indicated on the left of the
declaration and instruction section.

� Cancel the update of the variable states by
choosing the Status Display command again or
the Status Display button.

The previously read states are then displayed
as “frozen” states. You can use this option for
troubleshooting. For our example, however, this is
not necessary.

If, in a complex program, you wish to display states
of specified variables which are not located close to
each other in the program and thus cannot be
displayed simultaneously in a single window, or if
you wish to display variables of different POUs, you
can select the variables and display them in the
variable window. You can view the states of variables
of differing POUs simultaneously in the variable
window and with the POU Editor in Online mode.
This feature of Sucosoft is particularly helpful when
testing programs which invoce function modules.
This is not relevant with our mini-program. However,
try out this function with the “initial_pos” and “motor”
variables:
67

Test and Commissioning

68

 A
W

B
27

-1
30

7-
G

B

� Position the cursor on the “initial_pos” variable
and select “Online � Transfer variable” or press
the respective button.

“Transfer variable”

� Repeat the process with the “motor” variable.

The variable window opens in the background and
can be viewed after you changeover to the main
window of the T & C.

� Activate the “Variable List” window and click on
the “Variable Window”.

The variable window appears in the foreground.

� Double click in the variable list (left hand window)
on “POSITION”, in order to display both of the
transferred variables in the information section
(right hand window).

� Switch on the display status for the variables in
the window via ‹ Display variable status› or use
the respective button to display the current states
of the selected variables.

“Display status”
02
/0

2

Testing the program

02
/0

2
A

W
B

27
-1

30
7-

G
B

Figure 41: Variable window with status display

If you mark a variable (e.g. “initial_pos”) in the left or
right section of the window, on a PS4-300 or PS416,
the button for forcing a variable in the RUN state
becomes available. More detailed information
concerning this topic (Forcing) can be found in the
manual “S40 User Interface” (AWB2700-1305-GB).

� Exit display of the status by clicking again on the
“Display status” button.

� Return to the Online Editor window via ALT +
TAB.
69

Test and Commissioning

70

 A
W

B
27

-1
30

7-
G

B

Online POU modification

If you have modified the POU, the ‹ Online �
Activate› menu and the “Activate” button in the
toolbar will be available.

“Activate”

� Select ‹ Online � Activate› or click on the button.

The changes made will be updated in the POU, in the
program code file and in the controller.

� Select ‹ File � Close› , in order to end the POU
Editor in Online mode.

You have now seen all Sucosoft S40 tools for
creating and testing an example PLC program in the
IL language. In the following chapter, the example
program will be extended using the programming
languages LD and FBD.
02
/0

2

02
/0

2
A

W
B

27
-1

30
7-

G
B

10 Program Entry in LD/FBD
You can optionally create and commission programs
in the LD or FBD graphic programming languages
instead of the text based IL language. With LD and
FBD, the instruction section of a POU is represented
by graphical symbols. The declaration section in LD
and FBD is displayed the same as in IL or ST.

The programming languages IL, LD and FBD are
interchangeable. You can thus create a program in
LD and display and process it in IL or FBD. Change
over between ST and the graphic languages is not
possible.

In order to create a POU in the LD programming
language, activate the editor via ‹ Extras �
Programming Language � LD› or via the icon.

“POU Editor LD”

The language element toolbar will then contain LD
specific operators, which enables actions for the
POU Editor LD.
Figure 42: Toolbar LD

In order to create a POU in the FBD programming
language, activate the editor via ‹ Extras �
Programming Language � FBD› or via the icon.
71

Program Entry in LD/FBD

72
“POU Editor FBD”

The language element toolbar will then contain FBD
specific operators, which enables actions for the
POU Editor FBD.
Figure 43: FBD Toolbar

A tool tip (appears when you move the mouse pointer
over the button) provides a short description of the
operator.
Displaying the example
program in LD/FBD
 A
W

B
27

-1
30

7-
G

B

You can display and change the example program
which you have created in the Offline mode of the
POU Editor in IL, in one of the graphical
programming languages.

Display POU in LD

� Select the LD programming language as
described beforehand.

The POU “position” is displayed as a ladder diagram
in the instruction section:
02
/0

2

Displaying the example
program in LD/FBD

02
/0

2
A

W
B

27
-1

30
7-

G
B

Figure 44: POU “position” in LD format
73

Program Entry in LD/FBD

74
Display POU in FBD

� Select the FBD programming language as
described beforehand.

The POU “position” is displayed in the instruction
section using graphical symbols:
-1
30

7-
G

B

 A

W
B

27
Figure 45: POU “position” in FBD format
02
/0

2

Entering a program in LD

02
/0

2
A

W
B

27
-1

30
7-

G
B

The logical structure of the program represented in
LD and FBD corresponds to the task of the example
program.

The instruction comments are not assigned to the
individual graphic symbols, but appear in the
respective network comment instead.
Entering a program in
LD
Preconditions:

You already know the objective of programming
example 1.

The “example” project has been created.

The new POU of type Program has been created.

The required variables have been declared.

Program example in LD:

The program is subdivided into two networks.

The contacts “initial_pos” and “start_button” which
are connected in series in network 0001 represent
the AND operation required to switch on the motor.

The contacts “stop_button” and “position_A” which
are connected in parallel in network 0002 represent
the OR operation required to switch off the motor.
75

Program Entry in LD/FBD

76

 A
W

B
27

-1
30

7-
G

B

A short description of the network program is shown
as a comment in each network header.

Now enter the example program shown above in LD
yourself. Use the icons on the LD language toolbar.

� Select the LD programming language with the
menu item ‹ Extras � Programming language �
LD› , or click on the appropriate button in the
standard toolbar.

� Click the Initial LD Network button to create an
initial LD network.

This creates a network 0001 with a contact and an
output symbol. Both symbols automatically receive
the designation “undef_opd” (undefined operand).

“Initial LD network”

� Position the cursor between the first and last
symbols by clicking with the mouse. This is where
you will insert an AND operator.

� Click on the AND icon in the language element
toolbar.

A new contact is inserted in series with the existing
contact.

� Mark the output symbol in order to insert a
network termination coil contact with a set
condition.

A set output is created in parallel with the existing
output.

� Select the “old” output and delete it.

The graphical representation of network 0001 is now
complete.
02
/0

2

Entering a program in LD

02
/0

2
A

W
B

27
-1

30
7-

G
B

� Click on the Initial LD Network button to create a

undef_opd undef_opd undef_opd

001

(S)
new network.

This creates a network 0002 with a contact and an
output symbol.

� Mark the contact symbol in order to insert an OR
operator.

� Click on the “Insert parallel contact” icon.

A new contact is created in parallel with the existing
contact.

� Mark the output symbol with a mouse click in
order to insert a network termination coil contact
with a reset condition.

A reset output is created in parallel with the existing
output.

� Select the “old” output and delete it.

The graphical representation of both networks is now
complete.
77

Program Entry in LD/FBD
The default variable names “undef_opd” must now
78

 A
W

B
27

-1
30

7-
G

B

be replaced by the declared variable names. There
are two different ways of doing this:

Accept a variable name from the list of declared
variables (see Section Program entry in the IL
Editor on Page 32).

Enter the variable name with the “Name Element“
dialog box.

� Double click on the element to be named.

The respective dialog window is started.

Figure 46: Name Element dialog box

� Enter “initial_pos” and confirm with the OK
button.
02
/0

2

Entering a program in LD

02
/0

2
A

W
B

27
-1

30
7-

G
B

The variable name appears above the contact
symbol.

� Enter the rest of the variable names in both
networks in the same way.

� In order to input the comment, simply position the
cursor on the network which requires a comment
and call up the ‹ Edit � Network Comment› .

“Network Comment”

The Network Comment window opens:

Figure 47: “Network comment”

� Enter “motor on” and confirm with the OK button.

The comment you have entered appears in the
network header underneath the network number.

� Enter the comment in the same way for the
network 0002.

The program entry in LD is now complete.
79

Program Entry in LD/FBD
Entering a program in
FBD
80

 A
W

B
27

-1
30

7-
G

B

Preconditions:

You already know the objective of programming
example 1.

The “example” project has been created.

The new POU of type Program has been created.

The required variables have been declared.

Program example in FBD

The program is subdivided into two networks.

In the first network, the variables “initial_pos” and
“start_button” are ANDed to switch on the motor.
They form the necessary condition for the motor to
be switched on.

In the second network, the variables “stop_button”
and “position_A” are ORed to switch off the motor.
The Stop_button and Position_A are the switch-off
conditions.
02
/0

2

Entering a program in FBD

02
/0

2
A

W
B

27
-1

30
7-

G
B

A short description of the network program is shown
as a comment in each network header.

We will now describe how to enter the example
program shown above in FBD. Use the icons on the
FBD language toolbar.

� Select the FBD programming language with the
menu item ‹ Extras � Programming language �
FBD› , or click on the appropriate button in the
standard toolbar.

� Click on the “Insert initial FBD network” button to
create an initial FBD network.

This creates a network 0001 with an input and an
output symbol. The two symbols automatically
receive the default name “undef_opd”.

“Initial FBD network”

� Mark the input connection line and then use the
button to insert an AND condition.

� Mark the output symbol with a mouse click and
then insert a network termination using the icon
and create a set contact “S” as a set function.

The output symbol of the set command is added
below the existing output symbol. There is no longer
any need for the upper output and this can be
deleted.

� Select the upper assignment symbol and press
the DEL key to delete it.

The upper assignment symbol is erased.

The graphical representation of network 0001 is now
complete.
81

Program Entry in LD/FBD

82

 A
W

B
27

-1
30

7-
G

B

� Click on the “Initial FBD network” button to create
a new network.

This creates a network 0002 with a contact and an
output symbol.

� Mark the input connection line and then use the
button to insert an OR condition.

� Mark the output symbol with a mouse click and
then insert a network termination using the icon
and create a “R” reset function.

A reset output is added below the existing output.

� Select the superfluous assignement symbol and
press the DEL key to delete it.

The graphical representation of both networks is now
complete.
02
/0

2

Entering a program in FBD

02
/0

2
A

W
B

27
-1

30
7-

G
B

The default variable names “undef_opd” must now
be replaced by the declared variable names. There
are two different ways of doing this:

Accept a variable name from the list of declared
variables (see Section Program entry in the IL
Editor on Page 32),

Enter the variable name with the “Name element“
dialog box.

� Double click on the element to be named.

The respective dialog window is started.

Figure 48: “Name Element” dialog box
83

Program Entry in LD/FBD

84
� Enter “initial_pos” and confirm with the OK
button.

The variable name appears above the marked
connection line.

� Enter the rest of the variable names in both
networks in the same way.

Next, you enter the network comments, so you
select the relevant network first to do this.

� In order to input the comment, simply position the
cursor on the network which requires a comment
and call up the ‹ Edit � Network Comment› .

“Network comment”

� Enter “motor on” and confirm with the OK button.

The comment you have entered appears in the
network header underneath the network number.

� Enter the comment in the same way for the
network 0002.

The program entry in FBD is now complete.
 A
W

B
27

-1
30

7-
G

B

02

/0
2

Online display of the
example program in LD or
FBD

02
/0

2
A

W
B

27
-1

30
7-

G
B

Online display of the
example program in LD
or FBD
The program that is executed in the controller can be
displayed in the POU Editor in Online mode in either
of the programming languages IL, LD or FBD.

If you created the program in the LD/FBD POU
Editor, the comments are not assigned to the
individual lines in the IL representation, but appear
instead at the start of the corresponding program
sequence:
Figure 49: POU “position” in LD format (online)
85

Program Entry in LD/FBD

86

 A
W

B
27

-1
30

7-
G

B

LD representation

You can switch between the programming
languages. This is possible with the status display
switched off and with an active status display.

� Select the ‹ Extras � Programming language �
LD› or click on the appropriate button in the
standard toolbar.

“POU Editor LD”

� Carry out modifications in the same way as in the
IL POU Editor.

You will find detailed information in the AWB 27-
1305-GB “Sucosoft S40, Programming Software,
User Interface manual”.

If you have modified the POU, the Activate button in
the Online menu or the corresponding button in the
toolbar will be available.

“Activate”

� Click the “Activate” button

to update your modifications in the POU, in the
program code file and in the controller.
02
/0

2

Entering a program in ST

02
/0

2
A

W
B

27
-1

30
7-

G
B

FBD representation

You can switch between the programming
languages. This is possible with the status display
switched off and with an active status display.

� Select the ‹ Extras � Programming language �
FBD› or click on the appropriate button in the
standard toolbar.

“FBD Editor”

� Carry out modifications in the same way as
described in the LD POU Editor.
Entering a program in
ST
A further programing language of the Sucosoft is ST
structured text. The language is similar to PASCAL.

The declaration section is identical with IL, LD and
FBD, the instruction section – is similar to IL – which
is text based. You CANNOT however, switch
between the graphic based languages LD/FBD and
ST.

A toolbar is available to assist you to enter the ST
commands.

Figure 50: ST Toolbar
87

Program Entry in LD/FBD

88

 A
W

B
27

-1
30

7-
G

B

Creating an example program in ST

The example which we created can now be modified
for ST.

Preconditions:

You already know the objective of programming
example 1.

The “example” project has been created.

The new POU of type Program has been created.

The required variables have been declared.

Let us once again review the task at hand:

If the motor is in the initial position and the “start
button” is pressed, the motor is switched on.

The motor is switched off when the “stop button” is
pressed or when “Position_A” is reached.

Now the step by step procedure:

� Select the ST programming language with the
menu item ‹ Extras � Programming language �
ST› , or click on the appropriate icon.

“POU Editor ST”

Enter the ST example:

� Use the respective icon in the toolbar to enter the
IF...THEN framework.

You will see that an empty framework appears:
02
/0

2

Entering a program in ST

02
/0

2
A

W
B

27
-1

30
7-

G
B

IF ... THEN...
...;
ELSE
...;
END_IF;

� Complete the framework as follows:

(* Switches on the motor *)

IF initial_position = 1 AND start_button=1 THEN
Motor:=1;

END_IF;

(* Switches off the motor *)

IF stop_button = 1 OR position_A = 1 then
Motor:=0;

END_IF;
Figure 51: POU “position” in ST format
89

90

 A
W

B
27

-1
30

7-
G

B

02

/0
2

02
/0

2
A

W
B

27
-1

30
7-

G
B

11 Programming Task 2
A program is to be written for a running light effect
with eight LEDs which are connected to the digital
outputs such that each of the LEDs flash in
succession. The change from one LED to the next
should take place at a frequency of 2 Hz.

The running light effect is to start automatically when
the controller is switched on and continue until the
program is stopped by an external signal. There is no
provision for control elements to influence the
process. It is thus not necessary to scan inputs.

After commissioning, the program should be
modified online: the direction of running should be
reversed and the frequency changed to 1 Hz.

Implementation of the task
First read in this chapter how to implement the task
as an IL program. It contains all required information
on the program structure and on the language
elements used. The Section „Entering programming
task 2“ from Page 105 then describes how to enter
the program in Sucosoft S40.

The two most important variables which must be
programmed when implementing the task are the
signal duration for illuminating each LED and the
switching of the LEDs.

A manufacturer-defined function block from the
timers group can be used to define the signal
duration. The simplest solution is to use the
TimePulse (TP) function block, since no resets or
similar steps are necessary.
91

Programming Task 2

92

 A
W

B
27

-1
30

7-
G

B

A “general-purpose” user-defined function block
should be written for the switching of the LEDs so
that it can be used again for further similar tasks.
Accordingly, the output byte address and the
required value for the signal duration should be
transferred to the function block from “outside”,
i.e. from the calling POU. This “general-purpose”
function block can then be called several times in the
same program, for example so that several sets of
output bytes with a different signal duration can be
controlled by the same program.

Accordingly, a user-defined function block must be
created in which

the LEDs are switched on and off and

the manufacturer-defined function block TP is
called for defining the signal duration.

This function block should be assigned the name
LIGHT.

The function block LIGHT is called in the main
program (the Program POU). The Program POU
should be assigned the name EXP_PS4. The
required output byte address and the value for the
signal duration are transferred to the function block
LIGHT by the Program POU when it is called
by the latter.
02
/0

2

Entering a program in ST

02
/0

2
A

W
B

27
-1

30
7-

G
B

TP

 Defining the
signal

duration

FB Light
ACTUATING THE

LED's

INVOCATION
TP

 Invocation of FB “Light” and transfer of the actual data for the – output byte address for actuating the LEDs– signal duration

Program EXP_PS4
Figure 52: Program components for implementing the task

Two POUs must thus be written for the task:

one POU of type FUNCTION_BLOCK with the
name LIGHT

a second POU of type PROGRAM with the name
EXP_PS4.
93

Programming Task 2
Draft for function block
LIGHT
94

 A
W

B
27

-1
30

7-
G

B

Switching the LEDs

The running light effect can be achieved by setting a
single bit to load a bit pattern into the working
register at regular intervals, shifting the bit pattern by
one bit and then returning it. The bit pattern is
transferred as a variable. Since Sucosoft allows a
variable to be read in as an input variable, processed
and output as an output variable under the same
name, the required variable should be defined as an
input/output variable. Declare it with the name
Light_strip and with the data type Byte. The keyword
for input/output variables is VAR_IN_OUT; the end of
a declaration block is defined by the keyword
END_VAR for all scopes.

The physical address is not transferred until the
variable is called by the higher level program POU,
and thus does not need to be considered in the
function block. The following declaration block
should be used:

VAR_IN_OUT
Light_strip : BYTE ;

END_VAR

Either a shift instruction or a rotation instruction can
be used for shifting the bit pattern, either to the right
or left in either case. The use of a shift instruction,
however, requires a 1 to be loaded after every eight
shift steps. A rotation command to the right will thus
be used here. The instruction lines are the following:

LD Light_strip
ROR 1
ST Light_strip
02
/0

2

Draft for function block
LIGHT

02
/0

2
A

W
B

27
-1

30
7-

G
B

Defining the signal duration

The manufacturer-defined function block TP
(TimePulse) is used for defining the signal duration.

The TP function block (TimePulse)

Figure 53: Prototype of the TP function block

IN Start condition
PT Time value setting
Q Binary status of the timer
ET Current time value

TP

BOOL IN Q BOOL

TIME PT ET TIME
T (PT) T (PT) T (PT)

IN

Q

Figure 54: Timing diagram for TP

The timer starts with a rising edge on the IN input and
maintains the status 1 on the Boolean output Q for
the duration of the predefined time value PT. The ET
output indicates the current time value. While the
time is running, status 1 is maintained at output Q
irrespective of the IN input status.

The IN and Q operands are Boolean operands. The
PT and ET operands are of the standard data type
TIME (default value T#0s).
95

Programming Task 2

96

 A
W

B
27

-1
30

7-
G

B

Using function blocks
An instance, i.e. a copy, of a function block must be
created in the declaration section of the invoking
POU for each application of the function block. To
achieve this, the function block is assigned a freely
selectable instance name which must be declared as
a local variable.

The TP function block will be called in the LIGHT
function block. TP must thus be declared in the
LIGHT declaration section. In this case the instance
name Pulse is assigned to the TP function block. The
keyword for local variables is VAR:

VAR
Pulse : TP ;

END_VAR

When a function block is called, the values to be
processed are transferred to its input operands and
the results are returned with the output variables.
Additional variables are thus necessary in the
invoking POU for the calling parameters and for
receiving the results. The variable names are freely
selectable.

In our example, the following variables are defined
for use by the TP function block in the LIGHT
function block:

Start Start condition which is transferred
to the IN operand

Pulse_duration Time value setting for PT operand
Time_running Boolean status of the timer which is

output via the Q operand
Current_time Current time value which is output

via the ET operand
02
/0

2

Draft for function block
LIGHT

02
/0

2
A

W
B

27
-1

30
7-

G
B

The Pulse_duration variable is declared as an input
variable so that any time value can be transferred to
the operand PT of the TP function block with the
invocation of the LIGHT function block. The other
variables can be declared as local variables since
they are only valid within the LIGHT function block
and not in the invoking Program POU EXP_PS4. The
keyword for input variables is VAR_INPUT and for
local variables VAR. The following declaration lines
are thus required for the example:

VAR_INPUT
Pulse_duration : TIME ;

END_VAR

VAR
Start : BOOL ;
Time_running : BOOL ;
Current_time : TIME ;

END_VAR

The function block is called with the CAL instruction
followed by the assigned instance name to address
the function block, CAL Pulse in our example.

There are three methods available for parameter
transfer. Two of them will be described here.

With the first method the parameters are transferred
directly with the invocation of the function block. The
parameters are entered in parentheses, separated by
a comma. The “I” character is written between the
input and the output parameters:

CAL Pulse (IN := Start,
PT := Pulse_duration |
Time_running := Q,
Current_time := ET)
97

Programming Task 2

98
With the second method, the input parameters are
individually loaded with the LD command and
transferred to the function block operands using ST
before the function block invocation. The output
operands are scanned after the invocation. The
syntax for specifying the function block operands is
as follows:

Instance name.Operand

The invocation with parameter transfer according to
the second method thus has the following form:

LD Start
ST Pulse.IN
LD Pulse_duration
ST Pulse.PT
CAL Pulse
LD Pulse.Q
ST Time_running
LD Pulse.ET
ST Current_time:
 A
W

B
27

-1
30

7-
G

B

�
The choice of method depends on your personal
preference. The only advantage of the second
method is that it is one of the standard methods
of calling FBs to IEC/EN 61131-3, and thus may
be reusable by other IEC systems; with the more
compact first method, the specification of the
output parameters after the “I” character is
Moeller specific. The invocation of TP in the
example will be carried out according to the
second method.
02
/0

2

Draft for function block
LIGHT

02
/0

2
A

W
B

27
-1

30
7-

G
B

Completion of the program section
for signal duration

A pulse generator is created by returning the negated
output Q to the input IN:

LDN Time_running
ST Start

The output Q has the status 1 as long as the pulse
generator time is running. The status 0, which causes
the timer to restart, is then active for the duration of
one program cycle. The cycle time of the signal is
approximately the value PT; the inaccuracy of one
program cycle can be ignored.

The instruction lines for programming the signal
duration are then:

LD Start
ST Pulse.IN
LD Pulse_duration
ST Pulse.PT
CAL Pulse
LD Pulse.Q
ST Time_running
LD Pulse.ET
ST Current_time
LDN Time_running
ST Start

The program can now be simplified: The timer can be
directly started with the negated status of the output
operand Q. The Start and Time_running variables are
no longer necessary. The task definition does not
require interrogation of the current time value;
however, the current_time variable is still included to
allow the elapsed time to be displayed during the
online test.
99

Programming Task 2

100

 A
W

B
27

-1
30

7-
G

B

The program now has the following form:

LDN Pulse.Q
ST Pulse.IN
LD Pulse_duration
ST Pulse.PT
CAL Pulse
LD Pulse.ET
ST Current_time

Structure of the LIGHT function block
The bit pattern is to be shifted by one position after
the time PT has elapsed. This will be implemented
with a jump label, which allows the rotation to be
skipped as long as the pulse generator time is
running. The bit pattern of the Light_strip variable
should be shifted when the time has just elapsed,
i.e. during status 0 of the output Q. A conditional
jump to a jump label can be programmed with the
JMPC command.
The jump is carried out if there is a 1 in the working
register, i.e. if the current result = 1. The name of the
jump label is freely selectable, in this case we will use
not_shift:

LD Pulse.Q
JMPC Not_shift

LD Light_strip
ROR 1
ST Light_strip

Not_shift: (*jump label*)
LDN Pulse.Q
ST Pulse.IN
LD Pulse_duration
ST Pulse.PT
CAL Pulse
LD Pulse.ET
ST Current_time
02
/0

2

Draft for function block
LIGHT

02
/0

2
A

W
B

27
-1

30
7-

G
B

The program can now be optimised, i.e. it can be
shortened with a few small modifications.

The LDN Pulse.Q instruction, which provides the
start condition for the pulse generator, can be used
simultaneously as a condition for the jump label. The
JMPC jump command must be changed to JMPCN,
i.e. jump when current result = 0.
FUNCTION_BLOCK LIGHT

VAR_INPUT
Pulse_duration : TIME ;(* time value setting *)

END_VAR

VAR_IN_OUT
Light_strip : BYTE ;(* running light *)

END_VAR

VAR
Current_time : TIME ;(* current time value*)
Pulse : TP ;(* instance of the TP function block *)

END_VAR

LDN Pulse.Q (* current result=1 if timer elapsed*)
ST Pulse.IN (* start the timer*)
JMPCN Not_shift (* skip the bit pattern shift as long

as the time is running *)

LD Light_strip
ROR 1 (* rotation of the bit pattern *)
ST Light_strip

not_push
LD Pulse_duration (* transfer of the time value *)
ST Pulse.PT
CAL Pulse (* invocation of the function block *)
LD Pulse.ET
ST Current_time (* display of the current value for

the online test*)

END_FUNCTION_BLOCK
101

Programming Task 2

102
The program section where the variable Light_strip is
rotated is only processed if the time has just elapsed
in the timer TP. The timer is then started again and
the rotation instructions are skipped for as long as
the timer is running.
Program POU EXP_PS4
 A
W

B
27

-1
30

7-
G

B

The LIGHT function block will be called in the
program POU “EXP_PS4”. The following two
parameters must be transferred when called:

the time value for defining the running speed

the physical address where the running light is to
be indicated.

The function block must be declared first. The
instance name “Light_sequence” is assigned in the
declaration section of the EXP_PS4 POU:

VAR
Light_sequence : LIGHT ;

END_VAR

The running speed will be defined with a variable of
data type TIME which is initialised with the value
500 ms which corresponds to a pulse frequency of
2 Hz. The variable is declared as a local variable
since it is only required within this POU. The variable
is assigned the name Running_speed:

VAR
Running_speed : TIME := T#500ms ;

END_VAR

The Display variable is used to output the LED
control signals to a specified output. It is declared as
a local, directly represented variable. The variable
declaration specifies the address of the PLC output,
in this case output byte0. Following a cold start, the
Display variable should be initialised with the value 1
as follows:
02
/0

2

Program POU EXP_PS4

02
/0

2
A

W
B

27
-1

30
7-

G
B

VAR
Display AT %QB0.0.0.0 : BYTE := 1 ;

END_VAR

The same result could be achieved by initialising with
the bit pattern 00000001:

Display AT %QB0.0.0.0 : BYTE := 2#00000001 ;

It is only necessary to call the LIGHT function block
(under the declared instance name Light_sequence)
in the instruction section of the EXP_PS4 POU.
We will use method one, as described earlier, for the
parameter transfer:

CAL Light sequence (Pulse duration := Running
speed,

Light strip := Display)

The EXP_PS4 program POU has the following form:

PROGRAM EXP_PS4

VAR
Light_sequence : LIGHT ;
Running_speed : TIME := T#500ms ;

END_VAR

VAR
Display AT %QB0.0.0.0 : BYTE := 1 ;

END_VAR

 CAL Light_sequence(Pulse_duration :=Running_speed,
Light_strip := Display)

END_PROGRAM

The following figure shows an overview of the steps
to follow in the programming task, from program
entry to the test run of the complete program.
103

Programming Task 2
Previous sections already covered the topology

Entry of FB LIGHT

Entry of EXP_PS4 program

Variable declaration

Program entry

Topology configuration of the
system components

Program code generation

Test and commissioning

Transfer to program to PLC

Start Program

Test program

Variable declaration

Program entry

Test and modify program online
104

 A
W

B
27

-1
30

7-
G

B

configuration, the program code generation and the
Test and Commissioning (T & C) tool when
describing programming task 1. The use of the Test
and Commissioning tool (T & C) for programming
task 2 will now be described in more detail.

In the following section, you will first enter the LIGHT
function block and then the EXP_PS4 program.
02
/0

2

Entering programming
task 2

02
/0

2
A

W
B

27
-1

30
7-

G
B

Entering programming
task 2
This section will show you how to enter the two
required POUs in the POU Editor. The POUs which
are necessary for programming task 2 were
described in the previous section.

Create the LIGHT function block first and then the
EXP_PS4 program POU. In principle, the order of
entry can be changed, but the following order,
i.e. starting with the POUs which are in the lowest
structure level (in this case the LIGHT function block),
is recommended. The LIGHT function block is called
by the EXP_PS4 Program POU, and you should thus
create it and check the syntax before it is called.

The variable declaration and the program entry in IL
will now be described for both POUs.

First use the Navigator to create a new project folder
(new project) with the name “learnPS4” in the folder
“PROJECTS”:

� Use the menu point ‹ Projects � New...› or the
respective icon.

“Create New Project”

The “Create New Project” dialog box opens:

� First select “C” for the drive and then the
PROJECTS folder.

� Then enter “learnPS4” in the “New project folder”
field as the name of the folder for the new project.

� Confirm with OK.
105

Programming Task 2

106

 A
W

B
27

-1
30

7-
G

B

Entering the LIGHT function block

To create the function block, use the Navigator
menu:

� Select ‹ Tools � POU editor› or the respective
button in the toolbar.

“POU Editor”

The POU Editor opens.

� Click on the FB button in the standard toolbar
since the “Program” type of POU required is a
function block or,

� Select ‹ File � New POU› , then select the
“function block” POU type.

The two windows “Declaration and Instruction
section” open, arranged on the screen as specified in
the basic settings of the POU Editor.
02
/0

2

Entering programming
task 2

02
/0

2
A

W
B

27
-1

30
7-

G
B

Declaration of the variables
The variables will be declared in the Syntax-

Entry of FB LIGHT

Entry of EXP_PS4 program

Variable declaration

Program entry

Variable declaration

Program entry
Controlled Variable Editor (Syntax mode). In this
mode you do not have to worry about the keywords
or the syntax.

We already decided on the following variables in the
discussion of the program example:

VAR_INPUT
Pulse_duration : TIME ;
(* time value setting *)

END_VAR

VAR_IN_OUT
Light_strip : BYTE ;
(* running light *)

END_VAR

VAR
Current_time : TIME ;
(* current time value*)

Pulse : TP ;
(* instance of the function block*)

END_VAR

� Change to syntax mode – if necessary – with
‹ Options � Variable editor � Syntax mode› or
use the corresponding button.

“Syntax mode”
107

Programming Task 2

108
The “local” scope is preset for the creation of
function blocks when the variable editor is opened.
The tab for the selected variable type is displayed in
the foreground.

� In order to input the variables, use the menu point
“Insert” and “Variable declaration...”.

The following dialog appears:
 A
W

B
27

-1
30

7-
G

B

Figure 55: Variable declaration

Begin with the “Current_time” variable.

� The variables must be assigned to a “Data type”.
Select the “Data types” group.

In the lower window, all PLC data types are listed and
are represented in various groups.
02
/0

2

Entering programming
task 2

02
/0

2
A

W
B

27
-1

30
7-

G
B

� Open the “Date and Time” group and select
“TIME”.

You do not need to input a length here, i.e. this is
only useful with strings.

� Now input the “Current_time” variable names.

� Define the scope of the variables, i.e. “LOCAL” in
this case.

After OK, the variable is entered into the syntax-
controlled variable editor.

Proceed accordingly with the declaration of “Pulse”:

� “Pulse” should be assigned to a Manufacturer
function block. Select “Function blocks” as the
group.

� Search for the “timer modules” group under the
function blocks and select the “TP” module.

You do not need to define the length here also.

� State the instance name of your module: “Pulse”.

� The scope is “Local” here.

You can also input the variables completely via the
keyboard, if you do not know the names.

� Repeat the steps for “Light_strip” and
“Pulse_duration” also.

“Light_strip” should have the “In_Out” scope
assignment, “Pulse_duration” should have the
“Input” assignment.

� Switch over to the free variable editor in order to
view the complete range of declared variables.
109

Programming Task 2
110
Figure 56: Declared variables of the LIGHT function block

Entering the instructions in the IL Editor
� To use the IL programming language, change to

Entry of FB LIGHT

Entry of EXP_PS4 program

Variable declaration

Program entry

Variable declaration

Program entry
 A
W

B
27

-1
30

7-
G

B

IL if necessary with ‹ Options � Programming
Language � IL› or the corresponding button.

“POU Editor IL”

� Enter the program in accordance with the figure
wihch indicates the “Instruction section of the
LIGHT function block“. Observe the following
points:
02
/0

2

Entering programming
task 2

02
/0

2
A

W
B

27
-1

30
7-

G
B

You can use a mixture of upper case and lower
case characters.

Write your comments using brackets and
asterisks as shown overleaf.

Separate operators, operands and comments
with a tab to give a better overview.

Separate instruction sequences which form a
self-contained unit from the other instructions
using blank lines.

� Save the POU with ‹ File � Save As...› or by
clicking on the corresponding button.

“Save”

In the “Save As” dialog which opens, the current
project is already set.

� Enter the name LIGHT and confirm with OK.

� Carry out a syntax check with ‹ File � Syntax
check› , or click on the corresponding button.

“Syntax Check”

The syntax check should complete successfully if
the POU has been entered correctly. If the syntax
check reports errors, check everything you have
entered, correct any errors you find, and run the
syntax check again, the POU will be saved
automatically.
111

Programming Task 2

112
Entering the EXP_PS4 program

Stay in the POU Editor in syntax mode with IL
selected as the programming language.

� Create a new POU of type Program with ‹ File �
New POU› or the P button in the standard
toolbar.

Declaration of the variables
We already decided on the following variables in the

Entry of FB LIGHT

Entry of EXP_PS4 program

Variable declaration

Program entry

Variable declaration

Program entry
 A
W

B
27

-1
30

7-
G

B

discussion of the program example:

VAR
Light_sequence : LIGHT ;
Running_speed : TIME := T#500ms ;

END_VAR

VAR
Display AT %QB0.0.0.0 : BYTE := 1 ;

END_VAR

Local variables are the default type in Program
POUs.

First declare the LIGHT function block which you
have just created. Proceed in the same way as with
the declaration of the “Pulse” manufacturer function
block.
02
/0

2

Entering programming
task 2

02
/0

2
A

W
B

27
-1

30
7-

G
B

Figure 57: Variable declaration for the LIGHT function
block

� Select the “User” tab. You will see the “LIGHT”
function block listed here.

� Mark it and enter the name “Light_sequence”.

� Declare the local variable “Running_speed”.
Enter the variable name and the data type and
enter the time value t#500ms in the Initial Value
field.

� Declare the local variable “Display”. Enter the
variable name and the data type as initial value
“1”, and define QB0.0.0.0 as the address.

The declaration section of the POU “program” is now
complete.
113

Programming Task 2

114
Program entry in the instruction section
� Switch from the declaration section to the

Entry of EXP_PS4 program

Variable declaration

Program entry

Topology configuration of the
system components
instruction section and continue with the
programming language IL.

The LIGHT function block must be called with the
instance name declared in the POU instruction
section. The invocation and the parameter transfer
can be entered manually.

With Sucosoft S40, it is also possible to
automatically incorporate a predefined function
block call.
In order to do this, the function block must be in the
current project and the syntax check must already
have been executed without errors. Both conditions
are fulfilled in our example.
�
Manufacturer-defined function blocks are
project-independent and can be used in any
project without any additional steps.
 A
W

B
27

-1
30

7-
G

B

� Select ‹ Insert � Insert variable› .

The following dialog appears:
02
/0

2

Entering programming
task 2

02
/0

2
A

W
B

27
-1

30
7-

G
B

Figure 58: Inserting variables

You can select the scope of the function block
above. You now only see the respective function
blocks which were assigned to the respective area
during declaration. You have created your
“Light_sequence” function block as LOCAL.

� Select “Light_sequence” and ensure that “FB-
Instance With Prototype” is selected.

The following template appears in the instruction
section:

Figure 59: Template
115

Programming Task 2

116
� Fill out this template as follows:

CAL Light_sequence(Pulse_duration := Running_speed,

Light_strip :=Display)

The “Pulse_duration” input variable is assigned with
the “Running_speed” variable, the IN_OUT variable
“Light_strip” is assigned with “Display”.
�
If you enter the invocation of the function block
manually, remember that parameters for IN_OUT
variables must always be specified within the
brackets, and that IN_OUT parameters must
always be assigned a value.
 A
W

B
27

-1
30

7-
G

B

� Save the POU under the name EXP_PS4.

� Carry out the syntax check.

The syntax check should complete successfully if
you have entered the program correctly. If the syntax
check reports errors, check everything you have
entered, correct any errors you find, save the
function block and run the syntax check again.

Before the programming example can be checked
and modified online, the syntax must already be
checked and it must be converted into an executable
PLC program, transferred to the controller and
started. In order to do this, you must define the
topology and generate the program code. This was
already explained in detail in chapters Section 7 and
Section 8 for programming example 1. Follow the
same procedure for programming example 2.

Accordingly, the following sections will only describe
program test and online modifications for
programming example 2.
02
/0

2

Testing and modifying the
program online

02
/0

2
A

W
B

27
-1

30
7-

G
B

Testing and modifying
the program online
Each of the POUs of the program can be displayed

Transfer to program to PLC

Start Program

Test and modify program online

Test and commissioning
and modified if necessary while the program is
running in the controller. We will show you how to
change the running direction of the LEDs and the
speed. In order to do this, the Program window must
be open, the LIGHT POU selected and the
corresponding instruction section must be
displayed.

� Select the “Program” button in the T & C, when
the connection list window is open.

“Program”

The “Program” window opens.

Initially, only “RESOURCE” can be seen in the upper
level in the left hand section of the window; the name
of the POU program appears on the right. The lower
levels of the entire program can be displayed by
double clicking RESOURCE in the left window. If a
program is marked in the left hand window, the
program components of the lower levels appear in
the right hand window; i.e. function block POUs.

� Double click on “Resource”.

The name of the POU Program “EXP_PS4” appears
in the left hand window.
117

Programming Task 2

118
� Double click in the left hand window on
“EXP_PS4 [EXP_PS4]”.

The subordinate “LIGHT” function block appears.

� Double click in the left hand window on
“Light_sequence [LIGHT]”.

The “TP” function block is displayed on the right
hand window as the lowest level.
� Mark the “LIGHT_SEQUENCE [LIGHT]” function
 A
W

B
27

-1
30

7-
G

B

block and select the “View/Change POU” button.

View/Change POU

The POU Editor opens in Online mode with the
selected POU.

You can display the variable states in this window.
This can be helpful when troubleshooting.

� Select the “Status display” command in the
Online menu.

Status display

In the instruction and declaration section, the states
of the individual variables are displayed, and their
values are continuously updated:
02
/0

2

Testing and modifying the
program online

02
/0

2
A

W
B

27
-1

30
7-

G
B

Figure 60: IL Online Editor showing status display of the
variables

� Cancel the update of the variable states by
choosing the Status Display command again or
the Status Display button. The previously
updated values are now displayed as “frozen”
values on the screen.

Modifications in the POU Editor (Online mode)

You can modify your program in online mode with
the POU Editor. This saves time because it is not
necessary to carry out tasks such as saving the POU,
generating program code and transferring the new
program to the controller. When you press the
“Update” button, every change you have made is
automatically updated in the respective POU source
file and in the executable program.
119

Programming Task 2

120
Changing the running direction of the LEDs
You can change the running direction of the LEDs by
replacing the ROR (rotate right) command by the
ROL (rotate left) command.

�
The arrangement of the digital outputs on PS4
controllers starting with the least significant bit
on the far left and the most significant bit on the
right means that, with the ROR command, the
running light moves to the left and with ROL to
the right. This is because the Rotate commands
refer to the standard digital representation which
places the least significant bit on the right.
 A
W

B
27

-1
30

7-
G

B

The light running speed can be modified to 1 Hz by
redefining the time value for the TP function block to
1 second.

� Click in the program line which contains the
“ROR” command and change it to “ROL”.

The command and the “Activate” button are now
available.

� Click the Activate button.

“Activate”

The modification is automatically saved in the
function block and a new program code is
generated. The modified program code is then
transferred to the controller automatically and has an
immediate effect on the running direction of the
executing program, i.e. the running direction of the
LEDs connected to the output module is reversed.
02
/0

2

Testing and modifying the
program online

02
/0

2
A

W
B

27
-1

30
7-

G
B

Changing the running speed of the LEDs
The running speed was defined by assigning the
input variable “Pulse_duration” to the PT input
operand in the TP function block. The actual time
value is only transferred when the LIGHT function
block is called, whereby the variable
“Pulse_duration” is given the value of the variable
“Running_speed” declared in the program.
This value was initialised in the declaration section of
the program POU with 500 ms.

Since only the instruction section and not the
declaration section of the program POU can be
modified in the Online Editor, the new time value
must be transferred in the form of a time constant
when one of the two function blocks is called.
This time constant could have already been defined
in the LIGHT function block and transferred to the TP
standard function block, but the LIGHT function
block would then no longer be “general-purpose”.
The new time value should thus be specified in the
program POU EXP_PS4 and transferred to the
LIGHT function block when it is called. The time
constant of 1 second should now be transferred with
the “Pulse_duration” variable and not with the
“Running_speed” variable which was initialised with
500 ms:

CAL Light_sequence(
Pulse_duration := T#1s,
Light_strip :=Display

)

� Close the POU which is opened online.

� Select “POE” “EXP_PS4” from the structure tree:
Mark the POU in the structure tree on the left side
of the program window, and confirm with the
“Display/change POU” button.

� Click with the mouse on the position to be
modified.
121

Programming Task 2

122
� Change the time value setting into the constant
T#1s.

� Click the Activate button.

“Activate”

The modification is saved in the programming device
and in the controller.

The required modification is complete: The direction
of the running light has reversed and the running
speed has changed.

� Close the POU which is opened online.

� Close the T & C tool.
Multiple instances of
the Light FB
 A
W

B
27

-1
30

7-
G

B

In order to demonstrate the advantage of address-
independent function block programming with local
variables, we will now show how to make a simple
extension to programming task 2.

The function block LIGHT which you created once
and can now be considered as a completed and
tested module, will be instanced again to control a
further running light. If you are using a PS4-200
compact PLC for the programming example, you can
connect a further running light to the output byte of
an EM4-101-DD1 expansion module. With the
PS416 modular PLC, the output of the second
running light should occur on output byte 1 of the
PS416-OUT-400 digital output group. A modification
of the topology configuration for the PS416 is not
necessary.

With the PS4, you must add the expansion module to
the topology configuration.
02
/0

2

Multiple instances of the
Light FB

02
/0

2
A

W
B

27
-1

30
7-

G
B

� Open the topology configuration “DEVICE” in the
topology configurator.

� Mark the PS4 and select ‹ Edit � Decentral
expansion› .

� Select “EM4-101-DD1/88” from the list and
confirm with OK.

This configures the expansion module for 8 inputs
and 8 outputs.

Figure 61: Topology configurator

� Save the configuration.

� Open the EXP_PS4 program in the POU Editor
and extend the variable declaration in the variable
editor to add the variables needed for a second
running light.

The LIGHT function block is declared again under the
instance name “Light_sequence2” to create a
second instance of this function block.
123

Programming Task 2

124

 A
W

B
27

-1
30

7-
G

B

To demonstrate that the second instance runs
independently of the first instance called
“Light_sequence” without further programming
effort, declare two further variables for the
parameters of “Light_sequence2”.

The variable “Running_speed2” is initialised with the
value T#250ms which results in a pulse frequency of
4 Hz – twice as high as for the first running light. In
the case of the PS4, the second running light is
output to the output byte of the EM4-101-DD1. The
first digit in the address specifies the network line to
which the station is connected, in this case line 1. In
our example, the EM4-101-DD1 is the first station on
this string, the second digit of the address is thus
also 1. The expansion module is module 0 since it is
directly connected to the network line as a station.
The module number is third digit of the address. The
fourth digit of the address specifies the byte to be
addressed, i.e. byte 0. The complete address for the
output of the second running light is thus
%QB1.1.0.0 for the (sole) output byte of the EM4-
101-DD1.

The extended variable declaration for the compact
PLC is then as follows:
02
/0

2

Multiple instances of the
Light FB

02
/0

2
A

W
B

27
-1

30
7-

G
B

VAR

Light_sequence: LIGHT ;
Running_light: TIME := T#500ms ;
Display AT %QB0.0.0.0 : BYTE := 1 ;
Light_sequence2 : LIGHT ;(* Second instance of the

 LIGHT function block *)

Running_light2 : TIME := T#250ms ; (* Pulse duration for
second

 light sequence => 4 Hz *)

Display2 AT %QB1.1.0.0 : BYTE := 1;(* Output to the
 EM4-101-DD1 *)

END_VAR

The corresponding extended variable declaration for
the PS 416 PLC is as follows:

VAR

Light_sequence: LIGHT ;
Running_light: TIME := T#500ms ;
Display AT %QB0.0.0.0 : BYTE := 1 ;
Light_sequence2: LIGHT ;(* Second instance of the

 LIGHT function block *)

Running_speed 2: TIME := T#250ms ; (*Pulse duration for
second

 light sequence => 4 Hz *)

Display2 AT %QB0.0.0.1 : BYTE := 1; (*Output to the
HIGH Byte of the OUT-

400
*)

END_VAR

The call for the second instance of the function block
now has to be entered in the instruction section.

� Position the cursor at the end of the program.

� Select ‹ Insert � Insert variable...› or use the
respective button.

“Insert variable”
125

Programming Task 2

126

 A
W

B
27

-1
30

7-
G

B

Now select the “LOCAL” scope in the dialog if
necessary, and double click on “Light_sequence2”.

The new module appears as a call template with all
operands, which you have assigned with the
variables “Running_speed2” and “Display2”.

Figure 62: Call of Light_sequence and Light_sequence2

� Save the POU and create a new make file using
the Code Generation tool.

� Then generate the new program with
‹ Generate � Generate program code› or the
corresponding button and transfer it to the
controller.

After starting the program, you will see that the
running light connected to the EM4-101-DD1 runs
twice as fast as the light connected to the PS4. On
the PS416-OUT-400, the running light on the HIGH
byte runs twice as fast as the light connected to the
LOW byte. With this programming exercise, you
have instanced and used a custom-written function
block twice with the minimum of effort without
concerning yourself with where the local variables
used internally in the LIGHT FB are stored in the
controller. The manufacturer-defined function block
TP used in the LIGHT function block has also been
instanced several times automatically without
needing to worry about the assignment of data
ranges or marker addresses.
02
/0

2

Multiple instances of the
Light FB

02
/0

2
A

W
B

27
-1

30
7-

G
B

The extended program EXP_PS4 now appears in LD
and FBD as follows:
Figure 63: Extended program in LD/FBD
127

Programming Task 2
Displaying/forcing
inputs/outputs on the
PS4
128

 A
W

B
27

-1
30

7-
G

B

We will now show how to display the states of the
inputs/outputs and the diagnostic data for the
controller and the expansion module.

� Start the T & C.

� Click the Topology button. The current topology
configuration is read from the controller and
displayed.

� Mark both the PS4-141-MM1 and EM4-101-
DD1/88 devices with the left mouse button while
keeping the “Ctrl” button pressed, and click on
the “Display/Force Inputs/Outputs...” button.

The inputs and outputs of the selected devices are
displayed in a single window as follows. With a CPU
of the PS4 type, the inputs are displayed in RUN as
well as in STOP; with a CPU of the PS416 type, the
outputs are only displayed in the STOP state.
02
/0

2

Displaying/forcing inputs/
outputs on the PS4

02
/0

2
A

W
B

27
-1

30
7-

G
B

Figure 64: Status indication of the inputs/outputs

A monitoring function can be activated by clicking
the “Network Diagnostics” button in the Test &
Commissioning tool to check the status of each of
the devices in a networked system. Faulty devices or
cards are highlighted with hatching. The master of a
Suconet K string where a station is faulty is
additionally marked with a lightning flash. You can
demonstrate this feature if you remove the
“connection cable” between the controller and the
EM4-101-DD1.
129

Programming Task 2

130

 A
W

B
27

-1
30

7-
G

B

Figure 65: Network disgnostics with a faulty device

You can get more detailed information on the fault if
you click the Diagnostic Status... button and select a
device or card with the mouse.

“Diagnostic Status” button

The following dialog appears:

Figure 66: Diagnostic status of the faulty device

You have now got to know the main tools of the
Sucosoft S40 software. Of course, this Training
Guide is not designed to demonstrate all of the
numerous features provided by Sucosoft S40, but
we hope at least that you got a good overview and
are looking forward to trying out further possibilities.
02
/0

2

LD/FBD representation of
programming task 2

02
/0

2
A

W
B

27
-1

30
7-

G
B

You can find more details on each of the steps in the
Sucosoft S40 Reference Manuals “User interface”
(AWB2700-1305-GB) and “Language Elements for
PS4-200, PS4-300 and PS416” (AWB2700-1306-
GB). These additional manuals describe in detail all
available features of the Sucosoft software and the
Sucosoft language elements.
LD/FBD representation
of programming task 2
To round off, the following pages show the
instruction sections of programming task 2 for the
EXP_PS4 program in the graphical programming
languages LD and FBD.

The procedures to follow for generating an
executable program, for transferring it to the
controller and starting it are the same as for the
programming language IL.

LIGHT function block

FBD representation:
131

Programming Task 2
LD representation:
132
 A
W

B
27

-1
30

7-
G

B

02

/0
2

LD/FBD representation of
programming task 2

02
/0

2
A

W
B

27
-1

30
7-

G
B

EXP_PS4 program

LD and FBD representation:
133

134

 A
W

B
27

-1
30

7-
G

B

02

/0
2

02
/0

2
A

W
B

27
-1

30
7-

G
B

Index
A
Address setting

on the PS4 .. 7
on the PS416 .. 9

Addressing
input/output variables in the Sucosoft 12
Output byte of the expansion module 124

AND condition .. 75, 81
Assign variable name ... 78, 83
Assignment symbol .. 81
Attribute, definition for variables or constants 29
Automation task

Programming task 1 ... 11

B
Binry operands ... 12
Bit pattern .. 94

C
Change POU online ... 65
Changeover of programming languages 3
Checking POU ... 67
Comment

in IL ... 29
in LD/FBD ... 84

Comments
in LD/FBD ... 75

Connect device .. 51
Connection

specification ... 50
Contact symbol .. 76, 82
Context-sensitive menu ... 23
CPU diagnostics .. 59
CPU operating status, display 58
CPU Status .. 57
Create topology configuration

PS4 ... 40
PS416 ... 42

Creating a new project ... 19, 105
135

Index

136

 A
W

B
27

-1
30

7-
G

B

Creating the make file .. 46
Current result .. 13

D
Declaration section ... 26
Declaration section (POU Editor) 25
Declaration, Variables ... 27
Diagnostic Status, details for faulty device 130
Diagnostics bits, for CPU and program status 59
Diagnostics, Program ... 56
DIP switch for coding the card address 9
directly represented variables .. 12
Display

CPU operating status ... 58
Status of the input/outputs 128

Display variable state ... 67

E
Entry

Variables ... 34
Error

in user program ... 58
in variable declaration ... 28

Error display, after program code generation 48
Establishing

connection .. 51
Expanding topology configuration 123

F
Forcing ... 69
Forcing, Variable .. 69
Free mode .. 26
Function .. 23
Function block

declare .. 102
multiple instances ... 122
prototype .. 95

Function blocks
Declaration .. 96
Invocation in program ... 97
Parameter transfer .. 97

Function module
invocation in program ... 102
02
/0

2

Index

02
/0

2
A

W
B

27
-1

30
7-

G
B

function module ... 23

G
Generating the program code .. 47

I
IF...THEN frmework .. 88
Initial value ... 28
Input operand ... 13
Input variable, function block ... 97
Insert

Initial LD network .. 76
operators .. 33

Insert contact, LD .. 76
Instance name .. 96
Instruction section ... 12, 26
Instruction Section (POU Editor) 25
Interface ... 50
Interface converter ... 10

J
Jump command ... 100

K
Keywords ... 12

L
Language switchover ST and LD/FBD 87
LED control .. 92
Local variables ... 96

N
NAVIGATOR window ... 15
Network

comments, FBD ... 84
disgnostics ... 129
termination ... 76, 81, 82

Network Comment, LD .. 79

O
Online Editor .. 118
Online mode, POU Editor .. 65
Online POU modification ... 70
137

Index

138

 A
W

B
27

-1
30

7-
G

B

Open tools .. 15
Operand, function block ... 97
Operator insertion .. 33
OR condition .. 75, 82
OSF .. 52
Output operand .. 13
output symbol .. 76, 82
Output window for status and error messages 16

P
Parameter

modification in the function block 120, 121
transfer to function module 102

PCD .. 52, 53
POU .. 15, 23
POU Editor

in Online mode .. 65
Program

display in FBD ... 74, 87
display in LD ... 72, 86
entry in FBD .. 80
entry in IL .. 32, 110
entry in LD ... 75
entry in ST ... 87
IL-rerpresentation of program task 1 14
modify in Online mode .. 119
start ... 54
test .. 64
transfer to the PLC ... 53

Program diagnostics .. 61
Program error ... 59
Program language selection 86, 87
Program organistaion unit .. 23
Program properties .. 62
Program status ... 62
Program structure .. 64
Program task .. 17
Programming cable .. 10, 50
Programming language changeover 3
Programs

saving .. 36
Pulse generator .. 99
02
/0

2

Index

02
/0

2
A

W
B

27
-1

30
7-

G
B

R
Read command ... 13
Reset function .. 82
Resource .. 64
Rotation command .. 94

S
Scope, for POU "Program" .. 27
Select data type ... 28
Select PLC type ... 21
Select programming language 23
sequence ... 13
Set condition .. 76
Set function .. 81
Signal duration ... 91, 95
Source folder ... 23
Status indication, Variables ... 67
Status, Program ... 56
Structured text ... 87
Switch between programming languages 86
Switch on bus terminating resistors, EM4 7
Switching between programming languages 87
Syntax check ... 37
Syntax Mode .. 30
Syntax-Modus .. 26

T
Task

programming task 2 ... 91
Toolbar ... 33
Topologie ... 39
Topology Configurator ... 39
Transferring the operating system 51

U
Undertaking program parameterization 47
Update

POU after modification ... 86
Variable states .. 67
139

Index

140

 A
W

B
27

-1
30

7-
G

B

V
Variable

Forcing .. 69
Variable declaration .. 13, 108
Variable window with status display 69
Variables

creation from topologie .. 25
declaration .. 27
enter values in the function module 96
entry in IL .. 34

W
Wiring example

PS4 ... 8
PS416 ... 10
02
/0

2

02
/0

2
A

W
B

 2
7-

13
07

-G
B

List of revisions for manual AWB 27-1307 GB

Edition Page Topic New Changes Invalid

04/99 General Sucosoft S 30-S4 �

Sucosoft S 4 → S 40 �

AWB 27-1185/1186 �

AWB 27-1280-GB → AWB 2700-1305 GB �

AWB 27-1281-GB → AWB 2700-1306 GB �

14 Legend � �

41 Slave address �

52 Note �

52/53 Graphics/Table �

83 EMC: RFI, Surge �

06/99 Entire
manual

Rework for Version 4.0,
Main areas: Section 5 – 7, 9 – 10

�

	Title
	Contents
	Introduction
	Devices and software
	Documentation
	Writing conventions

	Hardware requirements
	PS4
	PS416

	1 Installing and Wiring the PS4
	Address coding
	Bus terminating resistors

	2 Installing and Wiring the PS416
	Address coding
	Inserting the cards

	3 Programming Task 1
	Automation task
	Basic information on programming to IEC/EN 61131-3

	4 NAVIGATOR
	Overview

	5 Creating a New Project
	Select PLC type

	6 Creating a Program
	Context-sensitive menus
	Program entry in the IL Editor
	Insert operators

	Saving the program

	7 Topology Configuration
	Creating the topology configuration for the PS4
	Creating the topology configuration for the PS416

	8 Program Code Generation
	Generating the program code

	9 Test and Commissioning
	Connecting the programming device to the controller
	Specifying the connection
	Transferring the operating system and program
	Transfer of the program from the Sucosoft to the PLC.

	Starting the program
	Testing the program

	10 Program Entry in LD/FBD
	Displaying the example program in LD/FBD
	Display POU in LD

	Entering a program in LD
	Program example in LD:

	Entering a program in FBD
	Program example in FBD

	Online display of the example program in LD or FBD
	Entering a program in ST

	11 Programming Task 2
	Implementation of the task
	Draft for function block LIGHT
	Switching the LEDs
	The TP function block (TimePulse)
	Structure of the LIGHT function block

	Program POU EXP_PS4
	Entering programming task 2
	Entering the instructions in the IL Editor
	Declaration of the variables

	Testing and modifying the program online
	Modifications in the POU Editor (Online mode)

	Multiple instances of the Light FB
	Displaying/forcing inputs/outputs on the PS4
	LD/FBD representation of programming task 2
	LIGHT function block
	EXP_PS4 program

	Index
	List of revisions

